The rate of decay of the mass is modelled by the differential equation dx/dt = -(5/2)x. Given that x = 60 when t = 0, solve the quation for x in terms of t.

(1) Rearrange the equation so that the left hand side is a function of x, and the right hand side is a function of t only.dx/dt = - (5/2) x(1/x)dx = -(5/2)dt(2) Integrate both sidesln(x/A) = -(5/2)t, where A is the integration constant, chosen to be lnA with no loss of generality(3) Rearrange for xx/A = exp(-(5/2)t)x = Aexp(-(5/2)t)(4) Use the boundary condition that x=60 when t=0.60 = A * 1A = 60x = 60exp(-(5/2)t)

Answered by Joseph C. Maths tutor

5663 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate e^x sinx


A stone is thrown from a bridge 10m above water at 30ms^-1 30 degrees above the horizontal. How long does the stone take to strike the water? What is its horizontal displacement at this time?


y = 2/x^3 find and expression for dy/dx


Prove or disprove the following statement: ‘No cube of an integer has 2 as its units digit.’


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences