Prove that 2 cot (2x) + tan(x) == cot (x)

(1) Aim to rearrange the right hand side (rhs) to make it look like the left hand side.LHS = 2 cot (2x) + tan (x)(2) Notice that the rhs is only in terms of x, whereas the right has a function involving 2x. Therefore use trig identities to make the RHS in terms of x onlycot (2x) = 1 / tan (2x) = [1 - tan 2 (x)]/[(2 tan (x))]ThereforeLHS = [1 - tan 2 (x)]/[ tan (x)] + tan (x) = 1 / tan(x) = cot (x) = RHS, as given.

Answered by Joseph C. Maths tutor

9950 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Shower-cleaner liquid is sold in spray bottles. The volume of liquid in a bottle may be modelled by a normal distribution with mean 955 ml and a standard deviation of 5 ml. Determine the probability that the volume in a particular bottle is:


A-level circle question


Points P and Q are situated at coordinates (5,2) and (-7,8) respectively. Find a) The coordinates of the midpoint M of the line PQ [2 marks] b) The equation of the normal of the line PQ passing through the midpoint M [3 marks]


A curve C has equation: x^3+2xy-x-y^3-20=0. Find dy/dx in terms of x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences