Prove that 2 cot (2x) + tan(x) == cot (x)

(1) Aim to rearrange the right hand side (rhs) to make it look like the left hand side.LHS = 2 cot (2x) + tan (x)(2) Notice that the rhs is only in terms of x, whereas the right has a function involving 2x. Therefore use trig identities to make the RHS in terms of x onlycot (2x) = 1 / tan (2x) = [1 - tan 2 (x)]/[(2 tan (x))]ThereforeLHS = [1 - tan 2 (x)]/[ tan (x)] + tan (x) = 1 / tan(x) = cot (x) = RHS, as given.

JC
Answered by Joseph C. Maths tutor

11747 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to express (4x)/(x^2-9)-2/(x+3)as a single fraction in its simplest form.


A circle with centre C has equation: x^2 + y^2 + 20x - 14 y + 49 = 0. Express the circle in the form (x-a)^2 +(y-b)^2=r^2. Show that the circle touches the y-axis and crosses the x-axis in two distinct points.


Circle C has equation x^2 + y^2 - 6x + 4y = 12, what is the radius and centre of the circle


Using the parametric equations x=6*4^t-2 and y=3*(4^(-t))-2, Find the Cartesian equation of the curve in the form xy+ax+by=c


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning