Differentiate y=x^4sinx

  1. Firstly, we must recognise that the function is in the form of a product, y=uv, where u and v are functions of x. Therefore, we can use the product rule, dy/dx = u (dv/dx) + v (du/dx). 2) We can write u = x^4 and differentiating this we obtain du/dx = 4x^3 by multiplying by the power then taking one off the power (the general rule for differentiation being y=ax^n, dy/dx = anx^(n-1). 3) We then take v= sinx and differentiating this we obtain dv/dx = cosx. 4) The product rule then gives, dy/dx = u (dv/dx) + v (du/dx) = x^4cosx + 4x^3sinx. 5) Simplifying this then gives, dy/dx = x^3 (xcosx + 4sinx).
Answered by Holly M. Maths tutor

6156 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a)Given that 10 cosec^2(x) = 16 - 11 cot(x) , find the possible values of tan x .


Express 6cos(2x)+sin(x) in terms of sin(x). Hence solve the equation 6cos(2x) + sin(x) = 0, for 0° <= x <= 360°.


Use the geometric series formula to find the 9th term in this progression : 12 18 27...


Find the area bounded be the curve with the equation y = x^2, the line x = 1, the line x = -1, and the x-axis.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences