Differentiate y=x^4sinx

  1. Firstly, we must recognise that the function is in the form of a product, y=uv, where u and v are functions of x. Therefore, we can use the product rule, dy/dx = u (dv/dx) + v (du/dx). 2) We can write u = x^4 and differentiating this we obtain du/dx = 4x^3 by multiplying by the power then taking one off the power (the general rule for differentiation being y=ax^n, dy/dx = anx^(n-1). 3) We then take v= sinx and differentiating this we obtain dv/dx = cosx. 4) The product rule then gives, dy/dx = u (dv/dx) + v (du/dx) = x^4cosx + 4x^3sinx. 5) Simplifying this then gives, dy/dx = x^3 (xcosx + 4sinx).
Answered by Holly M. Maths tutor

6787 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (3x^2 - 3x - 2)/(x-1)(x-2) in partial fractions


Find f'(x) and f''(x) when f(x) = 3x^2 +7x - 3


A cannon at ground level is firing at a fort 200m away with 20m high walls. It aims at an angle 30 degrees above the horizontal and fires cannonballs at 50m/s. Assuming no air resistance, will the cannonballs fall short, hit the walls or enter the fort?


Differentiate y=x^x with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences