Find the gradient of the curve y=2sinx/x^3 at the point x=

  1. To find the gradient of the curve we must differentiate the function. The function is in the form of a quotient, y=u/v, where u and v are functions of x. Therefore, we can use the quotient rule, dy/dx = (v (du/dx) – u (dv/dx))/ v^2. 2) We can write u = 2sinx and differentiating this we obtain du/dx = 2cosx. 3) We then take v= x^3 and differentiating this we obtain dv/dx = 3x^2 by multiplying by the power then taking one off the power (the general rule for differentiation being y=ax^n, dy/dx = anx^(n-1). 4) The quotient rule then gives, dy/dx = (v (du/dx) – u (dv/dx))/ v^2 = ( 2x^3cosx – 6x^2sinx) / x^6 = 2x^2 (xcosx – 3sinx) / x^6 = 2(xcosx – 3sinx)/x^4. 5) To find the gradient at the point Q where x=1 we substitute x=1 into dy/dx. We obtain, dy/dx = 2(cos1 – 3sin1).
HM
Answered by Holly M. Maths tutor

3854 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral of Cosec(x)/Sec(x) (i.e. Use of trignometric identities)


Find the coordinates of the maximum stationary point of the y = x^2 +4x curve.


Simplify ln(e^2) - 4ln(1/e)


A hollow sphere of radius r is being filled with water. The surface area of a hemisphere is 3pi*r^2. Question: When the water is at height r, and filling at a rate of 4cm^3s^-1, what is dS/dT?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning