Find the coordinates of the stationary points of the curve 3x=y+6x+3

First, straight away from reading the question you know this question will involve differentiating the function with respect to x so immediately you want to re-write the equation in terms of y which in this case y=3x^(2)-6x-3.From the question the question the key word stationary points should be jumping out to you and from this you should know that you'll need to differentiate the re-arranged function.Doing this you get dy/dx=6x-6 and in an exam situation the bulk of the marks will be yours.To tie up this particular question you now need to find the value of x which makes 6x-6=0 since at the stationary points the rate of change (dy/dx) or the gradient is 0.From this we can see that 6x=6 and hence x=1, plugging this into the equation of the curve we find that y=-6 and therefore the stationary point is (1,-6).

Answered by James S. Maths tutor

3738 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x + 3y + 3 = 0 and it intersects the line with equation 3x - 2y + 17 = 0 at the point B. Find the coordinates of B.


Evaluate the integral of cos(x)sin(x)(1+ sin(x))^3 with respect to x.


Find the derivative of f(x)=x^3 sin(x)


A curve has equation y=x^2 + 2x +5. Find the coordinates of the point at which the gradient is equal to 1.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences