Work out the nth term of the sequence 3, 7, 11, 15, ...

This is an example of an arithmetic series because each term is +4 from the previous term.This means for the "nth term" we start with +4n.Now we take a specific term from the sequence e.g. 3 (1st term) and see what constant we need to add to our "nth term".Since 3 is the 1st term, n in this example is equal to 1.So 4x1 = 4 but we have 3 therefore we need a constant of -1 to complete our "nth term" rule.Therefore the nth term is 4n - 1

Answered by Alice L. Maths tutor

3702 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the square of an odd number is always 1 more than a multiple of 4


The cost of a ticket increases by 10% to £19.25. What is the original cost?


Solve simultaneously x + y = 1, 2x + 3y =9


Make y the subject of the formula. x=(6+2y)/(3-y)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences