Work out the nth term of the sequence 3, 7, 11, 15, ...

This is an example of an arithmetic series because each term is +4 from the previous term.This means for the "nth term" we start with +4n.Now we take a specific term from the sequence e.g. 3 (1st term) and see what constant we need to add to our "nth term".Since 3 is the 1st term, n in this example is equal to 1.So 4x1 = 4 but we have 3 therefore we need a constant of -1 to complete our "nth term" rule.Therefore the nth term is 4n - 1

Answered by Alice L. Maths tutor

3219 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify (3x^2 + x -2)/(x^2 - 1)


Why doesn't (a+b)^2 = a^2+b^2


x^2 - x - 90 = 0. Solve to find x.


How do I know which rule of trigonometry to apply in a question?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences