Solve the Equation: 2ln(x)−ln (7x)=1

This is an equation laid out in terms of the natural logarithm, which essentially is the reverse function of ex . From this equation we need to find a solution for x =? Since we know that this equation involves logarithms, we should keep the logarithm laws in mind, which are;
eln(x)= xln(a) + ln(b) = ln(ab)aln(b) = ln(ab)
1) Firstly we should change the first term of the equation, using the logarithm laws 3rd logarithm law from above, so that 2ln(x) = ln(x2) 2) Combine all the terms on the left hand side of the equation to form one term, using the 2nd log law to give you : ln(x2/7x) = 13) Now we can undo the natural logarithm to give us an equation in terms of x, using the 1st log law stated above. Therefore x2/7x = e14) We can now rearrange this equation and factorise it to find solutions of x:x2=e
7x (by multiplying across by 7x)x2-7ex=0 (subtracting 7ex from both sides)x(x-7e)=0 (factorising)Therefore --> x=0 or x =7e


Answered by Dhruv G. Maths tutor

5238 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area between the curves y = x^2 and y = 4x - x^2.


Find the set of values of x for which 3x^2+8x-3<0.


A curve is described by f(x) = x^2 + 2x. A second curve is described by g(x) = x^2 -5x + 7. Find the point (s) where both curves intersect.


A curve is defined with the following parameters; x = 3 - 4t , y = 1 + 2/t . Find dy/dx in terms of x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences