Answers>Maths>IB>Article

The sixth term of an arithmetic sequence is 8 and the sum of the first 15 terms is 60. Find the common difference and list the first three terms.

Formulae to be used: nth term of an arithmetic sequence un= u1 + (n-1)d and sum of the first n terms of an arithmetic series Sn = (n/2) * (2u1 + (n-1)d) Substitute known values: u1 + 5d = 8(15/2) * (2u1 + 14d) = 60 Attempt to solve simultaneous equations, by eliminating u1 and d, in turn, to get d = -2, and u1 = 18, u2 = 16, u3 = 14.

BC
Answered by Bence C. Maths tutor

1674 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Integration by Parts


What is the most difficult topic in HL Maths?


How do i solve simultaneous equation with more than two equations and two unknowns?


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning