Answers>Maths>IB>Article

The sixth term of an arithmetic sequence is 8 and the sum of the first 15 terms is 60. Find the common difference and list the first three terms.

Formulae to be used: nth term of an arithmetic sequence un= u1 + (n-1)d and sum of the first n terms of an arithmetic series Sn = (n/2) * (2u1 + (n-1)d) Substitute known values: u1 + 5d = 8(15/2) * (2u1 + 14d) = 60 Attempt to solve simultaneous equations, by eliminating u1 and d, in turn, to get d = -2, and u1 = 18, u2 = 16, u3 = 14.

BC
Answered by Bence C. Maths tutor

1677 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Given two functions f and g where f(x)=3x-5 and g(x)=x-2. Find: a) the inverse f^-1(x), b) given g^-1(x)=x+2, find (g^-1 o f)(x), c) given also that (f^-1 o g)(x)=(x+3)/3, solve (f^-1 o g)(x)=(g^-1 o f)(x)


log_10⁡((1/(2√2))*(p+2q))=(1/2)(log_10⁡p+log_10⁡q),p,q>0,find p in terms of q.


What is a geometric sequence?


How to prove that Integral S 1/(a^2+x^2) dx= 1/a arctan(x/a) + C ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning