Find the turning value of the following function, stating whether the value is min or max, y = x^2 -6x + 5

First the student needs to differentiate the function to find dy/dx = 2x-6At dy/dx = 0, we know the curve is stationary. Now we can work out the x value such that x = 3Put x=3 back into the original equation to get y = -4.To find whether the value is min or max, we must further differentiate dy/dy to get d^2y/dx^2 = 2Since this is greater than 0, the curve is a minimum.

JW
Answered by Joseph W. Maths tutor

4714 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the nature of a stationary point


Find the turning point of the line y = -2x^2 +5x -9


A curve C has equation y = x^2 − 2x − 24x^(1/2) x > 0 find dy/dx


How do you solve a quadratic inequality eg find the values of x for which x^2 -6x +2 < -3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning