Find the turning value of the following function, stating whether the value is min or max, y = x^2 -6x + 5

First the student needs to differentiate the function to find dy/dx = 2x-6At dy/dx = 0, we know the curve is stationary. Now we can work out the x value such that x = 3Put x=3 back into the original equation to get y = -4.To find whether the value is min or max, we must further differentiate dy/dy to get d^2y/dx^2 = 2Since this is greater than 0, the curve is a minimum.

Answered by Joseph W. Maths tutor

4163 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate the natural logarithm ln(x)?


y = 2/x^3 find and expression for dy/dx


Differentiate y= 2^x


How do I identify that the coordinate (2,3) is the maximum point of the curve f(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences