How do you use the chain rule?


The chain rule is used to differentiate when there is a function within another function. For example y=(4x+6)0.5, y=(x+1)3The general formula for the chain rule is dy/dx= dy/du * du/dxAn example of this is differentiate y=(2x+3)3Let u= 2x +3 this means y = u3differentiate each term ...du/dx = 2. dy/du = 3u2. so dy/dx = dy/ du * du/dx = 3u2 * 2 = 6u2substitute the expression for u back into the equation so that it is in terms of x. dy/dx = 6(2x+3)2

Answered by Frances C. Maths tutor

2912 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(Using the Quotient Rule) -> Show that the derivative of (cosx)/(sinx) is (-1)/(sinx).


Implicitly differentiate the following equation to find dy/dx in terms of x and y: 2x^2y + 2x + 4y – cos (piy) = 17


How do you differentiate this


A cubic polynomial has the form p(z)=z^3+bz^2+cz+d, z is Complex and b, c, d are Real. Given that a solution of p(z)=0 is z1=3-2i and that p(-2)=0, find the values of b, c and d.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences