How do you use the chain rule?


The chain rule is used to differentiate when there is a function within another function. For example y=(4x+6)0.5, y=(x+1)3The general formula for the chain rule is dy/dx= dy/du * du/dxAn example of this is differentiate y=(2x+3)3Let u= 2x +3 this means y = u3differentiate each term ...du/dx = 2. dy/du = 3u2. so dy/dx = dy/ du * du/dx = 3u2 * 2 = 6u2substitute the expression for u back into the equation so that it is in terms of x. dy/dx = 6(2x+3)2

FC
Answered by Frances C. Maths tutor

3794 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point A lies on the curve y=5(x^2)+9x , The tangent to the curve at A is parralel to the line 2y-x=3. Find an equation to this tangent at A.


how to integrate by parts


Consider the function F(x)=17(x^4)+13(x^3)+12(x^2)+7x+2. A) differentiate F(x) B)What is the gradient at the point (2,440)


Given that f(x) = (x^2 + 3)(5 - x), find f'(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning