How do you use the chain rule?


The chain rule is used to differentiate when there is a function within another function. For example y=(4x+6)0.5, y=(x+1)3The general formula for the chain rule is dy/dx= dy/du * du/dxAn example of this is differentiate y=(2x+3)3Let u= 2x +3 this means y = u3differentiate each term ...du/dx = 2. dy/du = 3u2. so dy/dx = dy/ du * du/dx = 3u2 * 2 = 6u2substitute the expression for u back into the equation so that it is in terms of x. dy/dx = 6(2x+3)2

FC
Answered by Frances C. Maths tutor

3241 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate using the chain rule?


Find dy/dx for y = x^3*e^x*cos(x)


Differentiate the following: y = 3x^(1/3) + 2


Use the quotient rule to differentiate: ln(3x)/(e^4x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences