Two simultaneous equations are given as 2x + y = 5 and 3x + y = 7. Find the value of x and y.

The unknowns of x and y are the same in each equation, allowing us to combine the two in order to find out their values.The substitution method can be used in most cases if the coefficient is the same with x or y(coefficient = the amount the letter has been multiplied by)The coefficient of y in each equation = 1 so we can use this method2x + 1y = 53x + 1y = 7subtract equation 1 from 2 to find xx = 2then place this value into either equation to find y(2x2) + y = 54 + y = 5y = 1Answer: x = 2y = 1

Answered by Megan H. Maths tutor

3312 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve x^2 - 7x + 10 = 0


A football pitch has a length of the xm. Its width is 25m shorter than the length. The area of the pitch is 2200m2. Show that x2 - 25x - 2200 =0 and work out the length of the football pitch.


Solve the simultaneous equations: 2x + y = 18, x - y = 6


write (3.2 x 10^4) - (5 x 10^3) in standard form


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences