Two simultaneous equations are given as 2x + y = 5 and 3x + y = 7. Find the value of x and y.

The unknowns of x and y are the same in each equation, allowing us to combine the two in order to find out their values.The substitution method can be used in most cases if the coefficient is the same with x or y(coefficient = the amount the letter has been multiplied by)The coefficient of y in each equation = 1 so we can use this method2x + 1y = 53x + 1y = 7subtract equation 1 from 2 to find xx = 2then place this value into either equation to find y(2x2) + y = 54 + y = 5y = 1Answer: x = 2y = 1

MH
Answered by Megan H. Maths tutor

4124 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Express x^2+8x+15 in the form (x+a)^2-b


Suppose we have a circle with the equation x^2 +y^2 =25. What is the equation to the tangent to the circle at point (4,3)?


I struggle with time management whilst doing an exam paper. How will I be able to answer every question in the time given for the exam?


There are 9 counters in a bag. 7 of the counters are green. 2 of the counters are blue. Two counters are chosen at random, what is the probability one counter of each colour is chosen.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning