Show that the curve y =f(x) has exactly two turning points, where f(x)= x^3 - 3x^2 - 24x - 28

This question is about turning points of a curve, these occur when the gradient of a line is zero. In its current form, the equation of the curve tells us nothing about the gradient of the curve; it must be differentiated, recalling the power rule for differentiation:dy/dx = (3)x^(3-1) - (2)3x^(2-1) - (1)24x^(1-1) - (0)28dy/dx = 3x^2 - 6x -24Remembering that turning points occur when dy/dx = 0, we must show that there are two solutions to 3x^2 - 6x -24 = 0 to answer the question. We can do this by using the quadratic discriminant, b^2 - 4ac for quadratic expressions of the form ax^2 + bx + c = 0.First, simplify the expression by dividing by 3 (this is allowed as we are not dividing by zero or something that could be zero) to x^2 - 2x - 8 = 0 and compare it to the general form of the quadratic. This tells us that a = 1, b = -2 and c = -8. Now substitute the values into the discriminant:(-2)^2 - 4(1)(-8) = 4 - (-32) = 36 > 0As the value of the discriminant is positive, the quadratic has two distinct real roots and the curve y = f(x) has exactly two turning points.

Answered by Joshua A. Maths tutor

4514 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve, C has equation y = 2x^2 +5x +k. The minimum value of C is -3/4. Find the value of k.


f(x)=(2x+1)/(x-1) with domain x>3. (a)Find the inverse of f(x). (b)Find the range of f(x). (c) g(x)=x+5 for all x. Find the value of x such that fg(x)=3.


(M1) What direction does friction act in? What are the friction equations both generally and in limiting equilibrium? What does it mean for a system to be in equilibrium?


A small stone is projected vertically upwards from a point O with a speed of 19.6m/s. Modelling the stone as a particle moving freely under gravity, find the length of time for which the stone is more than 14.7 m above O


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences