What is the gradient of the curve y = 2x^3 at the point (2,2)?

Firstky differentiate to gain an equation for the gradient.Differentiating gives:dy/dx = 6x2Insert x = 2 into the above equation to find the gradient at that particular point of the curve.When x = 2, dy/dx = 6× 4 = 24Therefore the gradient is 24.

ER
Answered by Emily R. Maths tutor

7639 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The function f (x) is defined by f (x) = (1-x)/(1+x), x not equal to -1. Show that f(f (x)) = x. Hence write down f ^-1 (x).


A uniform ladder is leaning against a smooth wall on a rough ground. The ladder has a mass of 10 kilograms and is 4 metres long. If the ladder is in equilibrium, state an equation for the coefficient of friction of the ground


How would you find the minimum turning point of the function y = x^3 + 2x^2 - 4x + 10


How exactly does integration by parts work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences