How do you show some quadratic polynomials are always greater than 0?

Usually, there are two ways to solve this kind of problems. You could re-arrange the polynomial, make it become a square plus a constant, then the polynomial is greater or equal to the constant since a square of anything is greater or equal to 0.The second way is to use the formula. I would also encourage students to derive the formula themselves.

Answered by Luke W. Maths tutor

4506 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate x^2e^x with respect to x between the limits of x=5 and x=0.


How would you integrate ln(x)


Find the integral of xe^(-2x) between the limits of 0 and 1 with respect to x.


Given f(x) = (x^4 - 1) / (x^4 + 1), use the quotient rule to show that f'(x) = nx^3 / (x^4 + 1)^2 where n is an integer to be determined.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences