How do you show some quadratic polynomials are always greater than 0?

Usually, there are two ways to solve this kind of problems. You could re-arrange the polynomial, make it become a square plus a constant, then the polynomial is greater or equal to the constant since a square of anything is greater or equal to 0.The second way is to use the formula. I would also encourage students to derive the formula themselves.

LW
Answered by Luke W. Maths tutor

6217 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I find all the solutions to cos(3x) = sqrt(2)/2 for 0<=x<=2pi ?


Show that the integral ∫(1-2 sin^2⁡x)/(1+2sinxcosx) dx = (1/2) ln2 between the limits π/4 and 0. [5 marks]


Given that y = sin(2x)(4x+1)^3, find dy/dx


Find the coordinates of the points where the lines y=x^2-5x+6 and y=x-4 intersect.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning