How do you differentiate a function containing e?

y = ex is an interesting function because for any value of x, the corresponding value of y is always equal to the gradient of the curve at that point.Therefore, f(x) is equivalent to f'(x) - the derivative of the function. When you are met with slightly more complex functions, such as y = e2x^2, you can find the derivative of the function by following a simple rule:If f(x) = eg(x), then f'(x) = g'(x)eg(x). Therefore, the power, to which e is raised, remains the same and the function of e is multiplied by the derivative of the power.If we return to our example of y = e2x^2, we know that our g(x) = 2x2, so g'(x) = 4x.From this we know that f'(x) = (e2x^2) x (4x) = 4xe2x^2.

Answered by Finn H. Maths tutor

3478 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the differential equation: dy/dx = tan^3(x)sec^2(x)


Integration by parts; ∫e^x sin(x) dx


The quadratic equation 2x^2 + 8x + 1 = 0 has roots x1 and x2. Write down the value of x1+x2 and x1*x2 and find the value of x1^2 + x2^2


Differentiate x^x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences