How De Broglie's wavelength found/derived?

Through energy conservation, we can determine that no energy is lost and thereforeKinetic energy = Electrical energyAs a result the following equation is present where both sides represent energy:(m*(v^2))/2 = eVHere: ·        m = the mass of the electron·        v = the speed of the electron·        e = charge on a single electron·        V = voltageBy multiplying both formulae by (m/m) or 1, we can derive the following equations:((mv)^2)/(2m) = eV(p^2)/(2m) = eVHere, p = the momentum of the electronWe also know another equation for energy that leads us to determine:Energy = (hc)/ λ = m(c^2)Here: ·        h = Planck’s constant·        c = the speed of light·        λ = De Broglie’s wavelengthBy cancelling out c from both sides of the equation we can arrive at the equations:h/λ = mch/λ = pWe then substitute this into the earlier equation to arrive at the following:h^2/(2m*(λ^2)) = eV(2m*(λ^2))/h^2 = 1/(eV)(λ^2) = (h^2)/(2meV)λ = h/((2me*V)^(1/2))The final equation represents De Broglie’s wavelength.

AA
Answered by Abdur-Rahman A. Physics tutor

1785 Views

See similar Physics IB tutors

Related Physics IB answers

All answers ▸

How would I write the binary number 11001 in decimal form?


What are elastic and inelastic collisions? After a head on elastic collision of two balls of mass m1 and m2, deduce an equation relating the final and initial velocities of both balls.


How are the momentum and kinetic energy of an object related?


Why cant I use the same expression for doppler effect when the source is in motion and when the listener is in motion?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning