Integrating sin^5(x)cos(x) (in slow logical steps)

Step 1: Make a substitution for u=Sin(x) differentiate that function to show du/dx =Cos(x)Step 2: Rearrange for dx to show dx=1/Cos(x) du and replace the dx in your original integral to show (integral symbol) Sin^5(x)duStep 4: Substitute in your Sin(x)=u to get u^5Step 5: Integrate u^5 to get (u^6)/6 + CStep 6: Substitute your u=Sin(x) back in to get (Sin^6(x))/6 + C

CE
Answered by Curtis E. Maths tutor

3499 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

ABCD is a rectangle with sides of lengths x centimetres and (x − 2) centimetres.If the area of ABCD is less than 15 cm^2 , determine the range of possible values of x.


How do you find the equation of a tangent to a curve at a certain point, from the equation of the curve?


How do you complete the square?


Find the first three terms in the expansion of (4-x)^(-1/2) in ascending powers of x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning