Integrating sin^5(x)cos(x) (in slow logical steps)

Step 1: Make a substitution for u=Sin(x) differentiate that function to show du/dx =Cos(x)Step 2: Rearrange for dx to show dx=1/Cos(x) du and replace the dx in your original integral to show (integral symbol) Sin^5(x)duStep 4: Substitute in your Sin(x)=u to get u^5Step 5: Integrate u^5 to get (u^6)/6 + CStep 6: Substitute your u=Sin(x) back in to get (Sin^6(x))/6 + C

CE
Answered by Curtis E. Maths tutor

3281 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove by contradiction that sqrt(3) is irrational. (5 marks)


Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.


The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning