A curve has equation y = 20x -x^(2) - 2x^(3). The curve has a stationary point at the point M where x = −2. Find the x coordinates of the other stationary point.

First you must differentiate the given equation. This give you 20-2x-6x2. Since we are told that one of the stationary points is at x=-2, this is one of the factors of the differential equation. Meaning that the differential equation fully factorised is (10-6x)(2+x) =0.Wherever the differential equation has a solution pertaining to 0, this is a stationary point of the original curve. Hence x = 5/3 is the x coordinate of the second stationary point.

LW
Answered by Lawrence W. Maths tutor

3566 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x)=12x^2e^2x - 14, find the x-coordinates of the turning points.


Express as a simple logarithm 2ln6 - ln3 .


Solve the equation 7^(x+1) = 3^(x+2)


The curve C is paramterised by the equations: x = 5t + 3 ; y = 2 / t ; t > 0 Find y in terms of x and hence find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning