Differentiate y = x sin(x)

The question is asking to differentiate which means find dy/dx. If we think about the differentiation rules we know about, we see that we should use the product rule as y is a product (multiplication) of two basic functions, x and sin(x). If y = uv then by the product rule, dy/dx = u'(x).v(x) + u(x).v'(x).In our particular question, u(x) = x and v(x) = sin(x). We know that the derivative of sin(x) is cos(x). So:dy/dx = 1.sin(x) + x.cos(x) = sin(x) + x.cos(x).

Answered by Nathan T. Maths tutor

5878 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that d/dx(cosx)=-sinx show that d/dx(secx)=secx(tanx)


how do you differentiate y=x^2 from first principles?


Find the stationary point on the line of y = 6x - x^2 and state whether this point is a maximum or a minimum


Differentiate 6x^(7/2)-5x^2+7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences