Differentiate y = x sin(x)

The question is asking to differentiate which means find dy/dx. If we think about the differentiation rules we know about, we see that we should use the product rule as y is a product (multiplication) of two basic functions, x and sin(x). If y = uv then by the product rule, dy/dx = u'(x).v(x) + u(x).v'(x).In our particular question, u(x) = x and v(x) = sin(x). We know that the derivative of sin(x) is cos(x). So:dy/dx = 1.sin(x) + x.cos(x) = sin(x) + x.cos(x).

NT
Answered by Nathan T. Maths tutor

6146 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the roots of this equation: y=(8-x)lnx


Find the stationary points of the curve f(x) =x^3 - 6x^2 + 9x + 1


Solve for x (where 0<x<360) 2sin^2(x) - sin(x) - 1 = 0


Using partial fractions, find f(x) if f'(x)=5/(2x-1)(x-3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences