Find the gradient of the line Y = X^3 + X + 6 when X = 4

Step 1: Differentiate the equation Y = X^3 + X + 6 to find the gradient of the line at any point. To do this, multiply each term of X by the old power and -1 from that power. This makes dy/dx = 3X^2 + 1.Step 2: As X=4, Substitute all terms of X with 4. This means that the gradient at the point (4,3) = 3(4)^2 + 1 = 49.

Answered by Henry O. Maths tutor

2889 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: (4x^2+3x+9)


differentiate 3x^56


A curve has parametric equations x= 2sin(t) , y= cos(2t) + 2sin(t) for -1/2 π≤t≤ 1/2π , show that dy/dx = - 2sin(t)+ 1


How do I solve an integration by substitution problem?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences