Prove that cos(4x) = 8(cos^4(x))-8(cos^2(x)) + 1

cos(4x) = cos(2(2x)) = 2(cos^2(2x)) - 1 = 2 (cos^2(x) - 1)^2 - 1 = 8(cos^4(x)) - 8(cos^2(x)) + 1

Answered by Harry T. Maths tutor

5113 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For y=x/(x+4)^0.5, solve dy/dx


When do you use Mode, Mean and Median


How do we use the Chain-rule when differentiating?


A curve has the equation y = (1/3)x^3 + 4x^2 + 12x +3. Find the coordinates of each turning point and determine their nature.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences