Prove that cos(4x) = 8(cos^4(x))-8(cos^2(x)) + 1

cos(4x) = cos(2(2x)) = 2(cos^2(2x)) - 1 = 2 (cos^2(x) - 1)^2 - 1 = 8(cos^4(x)) - 8(cos^2(x)) + 1

HT
Answered by Harry T. Maths tutor

6093 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the inequality 􏰂|2x + 1|􏰂 < 3|􏰂x − 2|􏰂.


How do I differentiate something of the form a^x?


The quadratic equation 2x^2 + 8x + 1 = 0 has roots a and b. Write down the value of a + b, a*b and a^2 + b^2.


g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning