Differentiate y=(x^2 + 2x)cos(3x)

Here we need to use the product rule in order to differentiate as we have two functions involved that are being multiplied together. Therefore we use the formula:dy/dx = u dv/dx + v du/dxFirst let u=(x^2 + 2x) and v=cos(3x)Therefore du/dx = 2x + 2 and dv/dx= -3sin(3x) (using chain rule)Next plug the values into the formula to get:dy/dx = (x^2 + 2x)(-3sin(3x)) + cos(3x)(2x + 2)

Answered by Katie B. Maths tutor

2923 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the graphs of y = f(x), y = g(x) and find the point(s) where f and g intersect.


How do I find the cartesian equation for a curve written in parametric form?


How to do the product rule for differentiation


A curve has the equation x^2+2y^2=3x, by differentiating implicitly find dy/dy in terms of x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences