Describe the set of transformations that will transformthe curve y=x^ to the curve y=x^2 + 4x - 1

First complete the square on the curve in the answer to obtain y=(x+2)2 - 5 Now if you were to call your original equation y=f(x) you could see that the new equation is simply y=f(x+2) - 5This is now just a case of remembering the rules of transformationsThe bit inside the brackets provides a translation through the vector (-2 0) and the bit outside the brackets provides a translation through the vector (0 -5) Putting these two vectors together gives a translation through the vector (-2 -5) which is a translation 2 units in the negative x direction and 2 units in the negative y direction

Answered by Shavon D. Maths tutor

2756 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Derive the formula for differentiation from first principles


Find the equation of the straight line passing through the origin that is tangent to the curve y = ln(x).


Solve the differential equation (1 + x^2)dy/dx = x tan(y)


Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences