Firstly, we need to recognise that the question stated that the quadratic equation has equal roots. This tells us that the discriminant of the equation (b^2 - 4ac) will be an important part of the solution. If we model the equation given in the form ax^2 + bx + c, we would know that in this case, a = 1, b = 3p and c = p. If a quadratic equation has equal roots, we know that b^2 – 4ac = 0. Substituting the values for a, b, and c in, we get another quadratic equation in terms of p: 9p^2 - 4p = 0. We can factorise out p to get p(9p - 4) = 0, which gives us the solutions p = 0 and p = 4/9. Going back to the question, we’re told that p is a non-zero constant, which means that we can eliminate p = 0 as a solution. This leaves us with p = 4/9.