Find the equation of the tangent line to the parabola y=x^2+3x+2 at point P(1, 6).

In order to find the equation of the tangent line, first we have to find its slope. To do this, we take the first derivative of the function. In this particular case, we just need to apply the power rule (if y=x^n, dy/dx=nx^(n-1)) to each of the terms: y=x^2+3x+2 => dy/dx=2x+3 Having done that, in order to find the slope at the particular point we're looking at, we have to substitute for the value of x we are given, in this case x=1. If the slope of the tangent line at point P is m, m=2x1+3=5 Finally, in order to find the equation of the tangent line, we can use the straight line equation, y-y1=m(x-x1), where (x1, y1) are the coordinates of the point we're given. By substituting, we find: y-6=5(x-1) => y-6=5x-5 => y=5x+1 So, the equation of the tangent line is y=5x+1.

BA
Answered by Boris A. Maths tutor

5674 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Finding stationary points


Find the inverse of y = (5x-4) / (2x+3)


differentiate- X^3- 2X^2+3


y=4x^3+6x+3 so find dy/dx and d^2y/dx^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning