Solve the simultaneous equations 2x+3y=17 and 10x-y=5.

In order to solve the simultaneous equations, you should first get rid of one of the unknowns. In this case, one of the ways to do this is to multiply both sides of the first equation by 5 (2x+3y=17 => 10x+15y=85) and then subtract the second equation from the first one in order to get rid of the x: (10x+15y)-(10x-y)=(85)-(5) => 16y=80 => y=5. Having found y, we can substitute for y=5 in the second equation to find x: 10x-5=5 => 10x=10 => x=1. Hence, we get x=1, y=5.

Answered by Boris A. Maths tutor

3196 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Part 1 of a test has 60 marks, Part 2 has 100 marks. James scores 75% on part 1 and 48% on part 2. To pass the full test, he needs 60% of the total marks, does he pass?


Solve 3x^2 + 5x +2


How do I find the volume of a sphere?


ln(2x^2 +9x-5) =1+ ln( x^2+2x-15)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences