dx/dt = -5x/2, t>=0. Given that x=60 when t=0, solve the differential equation, giving x in terms of t.

dx/dt = -5x/2 to solve this we must firstly separate the variables ∫2/x dx = -∫5 dt then we solve the integrals using basic integration formulae 2lnx = -5t+c. When it comes to the exam, many students forget the +c and lose an easy mark so always remember to add this when integrating. We know x=60 when t=0, so we can substitutes these in to solve for c and complete the equation 2ln60 = -5(0)+c > c = 2ln60 it is often easier to leave c in log form since it can sometimes make later calculations easier. We can now sub our c into the original equation we solved and simplify to find 2lnx = -5t + 2ln60 > lnx = -5t/2 + ln60 > lnx - ln60 = -5t/2 > ln(x/60) = -5t/2 (Using basic log rules) > x/60 = e^(-5t/2) since the question asks us to find x in terms of t, we can find x = 60e^(-5t/2).

KS
Answered by Kulveer S. Maths tutor

5915 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate Cos^2(x)


Find the location and nature of the turning point of the line y=-x^2+3x+2


A sweet is modelled as a sphere of radius 10mm and is sucked. After five minutes, the radius has decreased to 7mm. The rate of decrease of the radius is inversely proportional to the square of the radius. How long does it take for the sweet to dissolve?


Solve the following definite integral: f(x)=3e^(2x+1) for the limits a=0 and b=1, leaving your answer in exact form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning