Find the integral of e^3x/(1+e^x) using the substitution of u=1+e^x

Differentiate U with respect to x to find dx in terms of du and substitute into the integral so that it is in terms of du, then using e^3x = (e^x)^3 and u = 1+e^x subsitute u in for x and simplify the integral to u-2+1/u du and integrate with respect to u. Then subsituting x back in for u.The final answer being (1+e^x)^2/2 - 2(1+e^x) + ln(1+e^x)

CF
Answered by Cory F. Maths tutor

5032 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are stationary points and how do I find them?


Rewrite ... logF=logG+logH−log(1/M)−2*logR ... in the form F=... using laws of logarithms


Find the second derivate d^2y/dx^2 when y = x^6 + sqrt(x).


Find the solutions of the equation 3cos(2 theta) - 5cos(theta) + 2 = 0 in the interval 0 < theta < 2pi.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning