How can I demonstrate that (sin(T)+cos(T))(1-sin(T)cos(T))=(sin(T))^3+(cos(T))^3

You first develop the expression on the left side of the equation:(sin(T)+cos(T))(1-sin(T)cos(T))=sin(T)-sin^2(T)cos(T)+cos(T)-sin(T)cos^2(T)=sin(T)(1-cos^2(T))+cos(T)(1-sin^2(T))Now, you will need to use the formula cos^2(T)+sin^2(T)=1Hence, 1-cos^2(T)=sin^2(T) and 1-sin^2(T)=cos^2(T)You now have the following equation: (sin(T)+cos(T))(1-sin(T)cos(T))=sin(T)(sin^2(T))+cos(T)(cos^2(T))QED

TC
Answered by Tabea C. Maths tutor

3164 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following expression with respect to x, (2+4x^3)/x^2


Differentiate with respect to x, x^2*e^(tan(x))


Find the stable points of the following function, determine wether or not they are maxima or minima. y= 5x^3 +9x^2 +3x +2


Find the point of intersection of the lines y=2x-7 and 4y-2=3x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning