Given that z = sin(x)/cos(x), use the quoitent rule to show that dZ/dx = sec^2(x)

let u = sin(x) and v = cos(x) => z = u/v. The quoitent rule is (u'v - v'u)/v^2, where u' = du/dx, v' = dv/dx. In this case du/dx = cos(x) and dv/dx = -sin(x) => u'v = cos^2(x) and v'u = -sin^2(x) => u'v - v'u = cos^2(x) + sin^2(x) = 1.v^2 = cos^2(x) => dz/dx = 1/v^2 = 1/cos^2(x) = sec^2(x)

Answered by Katie H. Maths tutor

3422 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A child of m1=48 kg, is initially standing at rest on a skateboard. The child jumps off the skateboard moving horizontally with a speed v1=1.2 ms^-1. The skateboard moves with a speed v2=16 ms^-1 in the opposite direction. Find the mass of the skateboard.


Find the derivative of f(x) = 2xe^x


Solve the inequality x^2 > 3(x + 6)


How to find the equation of a tangent to a curve at a specific point.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences