Given that z = sin(x)/cos(x), use the quoitent rule to show that dZ/dx = sec^2(x)

let u = sin(x) and v = cos(x) => z = u/v. The quoitent rule is (u'v - v'u)/v^2, where u' = du/dx, v' = dv/dx. In this case du/dx = cos(x) and dv/dx = -sin(x) => u'v = cos^2(x) and v'u = -sin^2(x) => u'v - v'u = cos^2(x) + sin^2(x) = 1.v^2 = cos^2(x) => dz/dx = 1/v^2 = 1/cos^2(x) = sec^2(x)

KH
Answered by Katie H. Maths tutor

3710 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the different steps involved in Proof by Induction?


The equation of a line is y=e(^2x)-9 and the line has points at (0,a) and (b,0). Find the values of a and b.


Tom drink drives two days a week, the chance of him being caught per day is 1 in 100. What is the chance he will not be driving after a) one week? b) one year?


theta = arctan(5x/2). Using implicit differentiation, find d theta/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences