A curve has equation y = (12x^1/2)-x^3/2

y = 12x1/2 - x3/2
First take the 1/2 power and multiply by the integer in front of the x (so 12 x 1/2 = 6), then minus 1 from the power (1/2 - 1 = -1/2) and replace the power above the x with -1/2. So that makes the first part of the equation = 6x-1/2
Next we do the same to the second part of the equation, we take the 3/2 power and multiply by the integer in front of the x (so -1 x 3/2 = -3/2), then minus 1 from the power (3/2 - 1 = 1/2). So that makes the second part of the equation = (-3/2) x1/2. So putting it together the final answer is dy/dx = 6x-1/2 -(3/2) x1/2

AB
Answered by Amay B. Maths tutor

5230 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

C and D are two events such that P(C) = 0.2, P(D) = 0.6 and P(C|D) = 0.3. Find P(D|C), P(C’ ∩ D’) & P(C’ ∩ D)


A curve C has the equation x^3 +x^2 -10x +8. Find the points at which C crosses the x axis.


The curve C has equation y = 3x^4 – 8x^3 – 3. Find dy/dx.


Prove that 2Sec(x)Cot(x) is identical to 2Cosec(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences