Show that cosh(x+y) = cosh(x)cosh(y) + sinh(x)sinh(y)

RHS: cosh(x)cosh(y) + sinh(x)sinh(y) = 1/4(e^x + e^-x)(e^y + e^-y) + 1/4(e^x - e^-x)(e^y - e^-y) = 1/4(e^x.e^y + e^x.e^-y + e^-x.e^y + e^-x.e^-y + e^x.e^y - e^x.e^-y - e^-x.e^y + e^-x.e^-y) = 1/4(2e^x.e^y + 2e^-x.e^-y) = 1/2(e^x.e^y + e^-x.e^-y) = 1/2(e^(x+y) + e^-(x+y)) = cosh(x+y) [QED]

AH
Answered by Alex H. Maths tutor

6365 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The function f(x)=x^2 -2x -24x^(1/2) has one stationary point. Find the value of x when f(x) is stationary, and hence determine the nature of this stationary point.


A curve has equation -2x^3 - x^2 + 20x . The curve has a stationary point at the point M where x = −2. Find the x-coordinate of the other stationary point of the curve.


How do I differentiate y=x^x?


f(x) = (sin(x))^3. What is f'(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning