Find the tangent to the curve y = x^2 + 3x + 2 that passes through the point (-1,0), sketch the curve and the tangent.

Differentiate to find dy/dx = 3x + 2;at point (-1,0) dy/dx = -1substitute in to y = mx + c, noting m = -1 and the line passes through (-1,0) yields c = -1y = -x - 1, simple to sketch this line.curve sketching, note we already have a zero crossing from the point in the question, find the other zero crossing as (-2,0), sketch a typical x^2 curve passing through the zero crossings and the y intercept at (0,2).

Answered by Peter W. Maths tutor

2738 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate Cos^2(x)


If I throw a ball vertically upwards with a velocity of 15 m/s and we assume the gravitational acceleration is 10 m/s^2. Draw the distance-time, and velocity-time graphs, how long is the ball in the air before it returns to the point I threw it from?


In the triangle ABC, AB = 16 cm, AC = 13 cm, angle ABC = 50 and angle BCA= x Find the two possible values for x, giving your answers to one decimal place.


Given that y = (3x^4 + x)^5, find dy/dx using the chain rule.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences