Show that tan(x) + cot(x) = 2cosec(2x)

For this we have to use trignometric identities, e.g Tan(x)= sin(x)/cos(x), sin2(x) + cos2(x) = 1, 1/sin(x) = cosec(x)
tan(x) + cot(x) = sin(x)/cos(x) + cos(x)/sin(x) = [sin2(x) + cos2(x)]/sin(x)cos(x) = 1/sin(x)cos(x) ------------------------> Sin(2x) = 2sin(x)cos(x) so sin(x)cos(x) = Sin(2x)/2 = 2/sin(2x) = 2cosec(2x)

MB
Answered by Moin B. Maths tutor

11363 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: y = xln[2x]


Express (5-√ 8)(1+√ (2)) in the form a+b√2 , where a and b are integers


If I had an equation with both 'x' and 'y' present, how would I find the gradient?


A curve has equation y = 20x −x2 −2x3 . (A) Find the x-coordinates of the stationary points of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning