Show that tan(x) + cot(x) = 2cosec(2x)

For this we have to use trignometric identities, e.g Tan(x)= sin(x)/cos(x), sin2(x) + cos2(x) = 1, 1/sin(x) = cosec(x)
tan(x) + cot(x) = sin(x)/cos(x) + cos(x)/sin(x) = [sin2(x) + cos2(x)]/sin(x)cos(x) = 1/sin(x)cos(x) ------------------------> Sin(2x) = 2sin(x)cos(x) so sin(x)cos(x) = Sin(2x)/2 = 2/sin(2x) = 2cosec(2x)

Answered by Moin B. Maths tutor

9437 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the points where the lines y=x^2-5x+6 and y=x-4 intersect.


Given that the increase in the volume of a cube is given by dV/dt = t^3 + 5 (cm^3/s). The volume of the cube is initially at 5 cm^3. Find the volume of the cube at time t = 4.


What is the binomial distribution and when should I use it?


How do you differentiate?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences