Show that tan(x) + cot(x) = 2cosec(2x)

For this we have to use trignometric identities, e.g Tan(x)= sin(x)/cos(x), sin2(x) + cos2(x) = 1, 1/sin(x) = cosec(x)
tan(x) + cot(x) = sin(x)/cos(x) + cos(x)/sin(x) = [sin2(x) + cos2(x)]/sin(x)cos(x) = 1/sin(x)cos(x) ------------------------> Sin(2x) = 2sin(x)cos(x) so sin(x)cos(x) = Sin(2x)/2 = 2/sin(2x) = 2cosec(2x)

Answered by Moin B. Maths tutor

9202 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is thrown vertically upwards with a speed of 24.5m/s. For how long is the ball higher than 29.4m above its initial position? Take acceleration due to gravity to be 9.8m/s^2.


How do I find the stationary points on the curve y = f(x) = x^3+6x^2-36x?


Can you explain what a logarithm is?


A circle A has equation x^2+y^2-6x-14y+54=0. Find a) the coordinates of the centre of A, b) the radius of the circle A.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences