How does proof by mathematical induction work?

Mathematical induction is a way of proving statements in maths. The principle is quite similar to dominoes (not pizza, the game) - if you push the first one, the second one will be pushed over, pushing the third one and so on. There are 3 stages to induction. The first stage is to prove that the base case, n = 1 is true (essentially the first domino). The second stage involves you assuming the case n = k is true. The final stage involves you using the assumption above to show that the case n = k + 1 is also true (essentially you're showing that if you push the kth domino, the (k + 1)th domino will also be pushed over).Here is an example of proof by induction being applied: For any positive integer n, 1 + 2 + 3 + ... + n = n(n + 1)/2. Let P(n) be the assumption that 1 + 2 + 3 + ... + n = n(n + 1)/2. Consider the base case, n = 1: Left-hand side = 1. Right-hand side = 1(1 + 1)/2 = 1 As LHS = RHS, P(1) is true.Assume that P(k) is true i.e. 1 + 2 + 3 + ... + k = k(k + 1)/2. Consider P(k + 1) [remember we have to use P(k) somewhere here] 1 + 2 + 3 + ... + k + (k + 1) = k(k + 1)/2 + (k + 1) (using P(k)) Taking a factor of (k + 1) from the RHS: k(k + 1)/2 + (k + 1) = (k + 1)[k/2 + 1] = (k + 1)(k + 2)/2 = (k + 1)((k + 1) + 1)/2 i.e. P(k + 1) is true.Therefore, as P(1) is true and P(k) true implies P(k + 1) is true, by the principle of mathematical induction, 1 + 2 + 3 + ... + n = n(n + 1)/2

SC
Answered by Shayantan C. Further Mathematics tutor

7052 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


Find the general solution of the second order differential equation y''(t)+y(t) = 5exp(2t)


Two planes have eqns r.(3i – 4j + 2k) = 5 and r = λ (2i + j + 5k) + μ(i – j – 2k), where λ and μ are scalar parameters. Find the acute angle between the planes, giving your answer to the nearest degree.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning