Differentiate f(x) = 14*(x^2)*(e^(x^2))

Differentiate f(x) = 14x2ex^2To approach this problem we first need to realise that f(x) is made up of two simpler functions multiplied together. This tells us that we should use the product rule to solve this (if f(x) = u(x)v(x) then f'(x) = u(x)v'(x) + u'(x)v(x)) Let's say our u(x) is 14x2. Then our u'(x) = 2 * 14 * x2-1 = 28xTherefore our v(x) is ex^2. If we are new to this we could then use the chain rule to solve for v'(x) OR if we are familiar with this form we might see straight away that v'(x) = 2xex^2 . To get our final answer we just follow the product rule definition as above, using the solutions u'(x) and v'(x) that we've just found.

TC
Answered by Toby C. Maths tutor

3306 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write 5x^2 + 30x + 36 in the form 5(x+A)^2+B where A and B are integers to be found.Then write the equation of symmetry for the graph of 5x^2 + 30x + 36


The equation of a curve is xy^2= x^2 +1. Find dx/dy in terms of x and y, and hence find the coordinates of the stationary points on the curve.


Find the equation of the tangent to the curve y = 2 ln(2e - x) at the point on the curve where x = e.


Solve the simultaneous equations x – 2y = 1 and x^2 + y^2 = 29.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning