Work out the equation of the tangent to a circle of centre [0,0] at the point [4,3]

We know that: (1) the radius of the circle to the point [4,3] is perpendicular to the tangent line, (2) if two lines are perpendicular, their gradients are negative reciprocals of each other, and (3) the formula for a straight line is y = mx + c. The radius gradient is equal to 3/4, so the tangent gradient is -4/3. Substituting m, y and x at [4,3] into the straight line formula gives c as 25/3. Therefore, the equation of this tangent line is y = (-4/3)x + (25/3).

Answered by Jamie S. Maths tutor

5895 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Katie wants to buy 4 adult show tickets for £10 each and 2 child show tickets for £3 each. There is a 10% booking fee and 3% is then added for paying by credit card. Work out the total charge for Katie if she pays with a credit card.


3/5 of a number is 162. Work out what 4/5 of the same number is.


Solve the simultaneous equations 3x +y =11 and 2x+y=8


Simplify fully 3/(2x + 12) - (x - 15)/(x^2 - 2x - 48)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences