Work out the equation of the tangent to a circle of centre [0,0] at the point [4,3]

We know that: (1) the radius of the circle to the point [4,3] is perpendicular to the tangent line, (2) if two lines are perpendicular, their gradients are negative reciprocals of each other, and (3) the formula for a straight line is y = mx + c. The radius gradient is equal to 3/4, so the tangent gradient is -4/3. Substituting m, y and x at [4,3] into the straight line formula gives c as 25/3. Therefore, the equation of this tangent line is y = (-4/3)x + (25/3).

JS
Answered by Jamie S. Maths tutor

6873 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do i change a recurring decimal into a fraction?


There are n sweets in a bag, 6 of which are orange, the rest are yellow. Hannah takes a random sweet from the bag and eats it, and then does so again. The probability that Hannah eats two orange sweets is 1/3. Show that n^2-n-90=0.


Rationalise the denominator of the fraction 3/sqrt(5)


Alice will play 2 games of tennis against Bob. Alice’s chances of winning each game is 0.7. Work out the probability of Alice winning exactly one match.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences