Work out the equation of the tangent to a circle of centre [0,0] at the point [4,3]

We know that: (1) the radius of the circle to the point [4,3] is perpendicular to the tangent line, (2) if two lines are perpendicular, their gradients are negative reciprocals of each other, and (3) the formula for a straight line is y = mx + c. The radius gradient is equal to 3/4, so the tangent gradient is -4/3. Substituting m, y and x at [4,3] into the straight line formula gives c as 25/3. Therefore, the equation of this tangent line is y = (-4/3)x + (25/3).

JS
Answered by Jamie S. Maths tutor

7546 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 20 balls in a bag. The probability is 0.25 of picking a red ball. If one more red ball is added, what is the new probability of picking a red ball at random?


Solve x^2 + 15x = - 50


Solve the following simultaneous equations, 1) 3x + 3y = 9 and 2) 4x + 2y = 13.


Find the value of x: x^2-3x-3=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning