Work out the equation of the tangent to a circle of centre [0,0] at the point [4,3]

We know that: (1) the radius of the circle to the point [4,3] is perpendicular to the tangent line, (2) if two lines are perpendicular, their gradients are negative reciprocals of each other, and (3) the formula for a straight line is y = mx + c. The radius gradient is equal to 3/4, so the tangent gradient is -4/3. Substituting m, y and x at [4,3] into the straight line formula gives c as 25/3. Therefore, the equation of this tangent line is y = (-4/3)x + (25/3).

JS
Answered by Jamie S. Maths tutor

7658 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 3x + y = 15 and 4y + 3 = 9x


when given that y is 20% bigger than x, how can you express this as a ratio of y to x?


how should i revise maths, since there aren't many notes and its mainly applied?


Simplify the following expression: √48+√(16 3/9) Give your answer in the form: (a√3)/b where a and b are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning