The region below the curve y = e^x + e^(-x) and the lines x = 0, x = ln4 is rotated 2π radians about the x-axis. Find the volume of the resulting solid.

We can use the formula for a Volume of Revolution: V =π ∫ (e^x + e^(-x))^2 dx, with limits x = 0, x = ln4.Expanding the brackets: (e^x + e^(-x))^2 = e^2x + 2 + e^(-2x).So: V = π ∫ (e^2x + 2 + e^(-2x)) dx = π [ (1/2)e^2x - (1/2)e^(-2x) + 2x ], evaluated with limits x = 0, x = ln4.Substituting in the limits we have:V = π( [(1/2)e^2ln4 - (1/2)e^(-2ln4) + 2ln4] - [(1/2) - (1/2) + 0] ) V = π [ (1/2)(4^2 - 4^(-2)) + 2ln4 ]Evaluating: V = π((255/32) + 2ln4).

Answered by Rumen S. Maths tutor

3574 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of the constants a and b for which ax + b is a particular integral of the differential equation 2y' + 5y = 10x. Hence find the general solution of 2y' + 5y = 10x .


g(x) = x/(x+3) + 3(2x+1)/(x^2 +x - 6) a)Show that g(x) =(x+1)/(x-2), x>3 b)Find the range of g c)Find the exact value of a for which g(a)=g^(-1)(a).


Given that y = (3x^4 + x)^5, find dy/dx using the chain rule.


Using mathematical induction, prove De Moivre's Theorem.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences