Show that the recurring decimal 0.13636... can be written as the fraction 3/22

First of all, identify how many digits are recurring in the decimal, in this case it's two: 0.13636...Let x = 0.1363636...Since there are two digits recurring we use 100x = 13.63636... (if it is 1 digit we use 10x, if 3 digits use 1000x and so on)To get rid of recurring decimals, we have to subtract 100x by x because since both numbers have an infinite number of recurring 63, they will cancel each other out.So we get 99x = 13.5, which can also be written as 99x = (135/10)Then we divide both sides by 99 to get x = (135/990)Finally, we simplify the fraction by dividing both the numerator and the denominator by 45, to get x = (3/22)Therefore 0.1363636... = (3/22)

Answered by Vanessa C. Maths tutor

12047 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The sides of an equilateral triangle are given by the expressions x+y, 2y-1 and 3y-2x+1. Find the values of x and y.


Joan cycles from her house to a shop 900 m away. She then cycles to her friends' house 700 m away. The average speed for the first part of her journey is 2 m/s. The second part takes her 16 mins. What is the average speed for her entire journey?


How to factorise the expression x^2 + 8x + 15


Renee buys 5kg of sweets to sell. She pays £10 for the sweets. Renee puts all the sweets into bags. She puts 250g of sweets into each bag. She sells each bag of sweets for 65p. Renee sells all the bags of sweets. Work out her percentage profit.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences