How can we determine the molecular and electron geometry of H2O?

The molecular geometry deals with the position of the nucleus of the different atoms in the molecule whereas the electron geometry deals with the position of the orbitals. Electron geometry is specific for each atom in the molecule. According to VSEPR theory, valence electrons repel more than bonding electrons. This can be used to determine the geometry as we know that the oxygen atom in H2O has 2 pairs of valence electrons and 2 pairs of bonding electrons. There are therefore 4 electron domains on the oxygen atom which suggests a tetrahedral electron geometry (in order to minimise electron-electron repulsion). Because not all electron domains are counted in the molecular geometry, the shape of the molecule H2O is bent (or V-shaped).

ER
Answered by Eva R. Chemistry tutor

6196 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

Describe the different types of isomers.


Cu2+ (aq) reacts with ammonia to form the complex ion [Cu(NH)3)4]2+. Explain this reaction in terms of acid-base theory, and outline the bonding in the complex formed between Cu2+ and NH3


What mass of carbon dioxide is produced from burning 100 grams of ethanol in oxygen according to this reaction: C2H5OH + 3 O2 --> 2 CO2 + 3 H2O


What are the optimal conditions for the Haber Process N2(g) + 3H2(g) <--> 2NH3(g)? Use Le Chatelier's principle to derive your answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences