The equation 5x^2 + px + q = 0, where p and q are constants, has roots t and t+4. Show that p^2 = 20q + 400.

We know that if we have a polinomial of the form ax^2 + bx + c = 0, then:sum of the roots = -b/a and product of the roots = c/a Therefore: t + (t + 4) = -p/5 and t(t + 4) = q/5 Therefore: 2t + 4 = -p/5 so t + 2 = -p/10 and t^2 + 4t = q/5 so (t + 2)^2 = q/5 +4 Sub. the first relation into the second one: p^2/100 = q/5 + 4p^2 = 100(q/5 + 4) = 20q + 400 Therefore: p^2 = 20q + 400

Answered by Alexandra B. Maths tutor

3800 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you factorise a quadratic? Something like x^2 + 4x + 3


Write 32 X 8^(2x) as a power of 2 in terms of x.


How do you solve algebraic equations?


Can you explain how to divide mixed number fractions?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences