How do you know if a stationary point on a curve is a maximum or minimum without plotting the graph?

Once you have found the stationary point of the equation by differentiating the equation and equating it to zero. You can then find out if the point you have found is a maximum, minimum or point of inflection by taking the differential equation you found. This gives you a second differential which shows you whether the gradient of the line is increasing or decreasing (and how fast) at a point . Then you plug in the value from the stationary point you found and the sign of the answer tells you the nature of it; if it's positive its a minimum, if it's negative its a maximum and if it equals zero its a point of inflection.Example:Given dy/dx = 3x2 + 6x , find the nature of the turning point at x=-2.Work out dy2/d2x = 6x+6Then plug in x=-2 to get: dy2/d2x = -12+6 =-6, therefore the turning point is a maximum as the second derivative is less than zero.

Answered by Sam G. Maths tutor

3596 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate y = 5 x^3 + 1/2 x^2 + 3x -4


The quadratic equation 2x^2 + 8x + 1 = 0 has roots x1 and x2. Write down the value of x1+x2 and x1*x2 and find the value of x1^2 + x2^2


Solve 2^(3x-1) = 3


A curve C with an equation y = sin(x)/e^(2x) , 0<x<pi has a stationary point at P. Find the coordinates ofP?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences