Show that the curve with equation y=x^2-6x+9 and the line with equation y=-x do not intersect.

First, you equate the 2 equations to get this single quadratic equation (x^2-5x+9=0). And then evaluate the expression b^2-4ac. If b^2 -4ac is < 0 then they do not intersect. In our case b^2 -4ac is -9, which is < 0; therefore they do not intersect.

FK
Answered by Foday K. Maths tutor

3860 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate ln( x^2 )


Integrate xsin(x) with respect to x


The graphs of functions f(x)=e^x and h(x)=e^(-.5x), where x is a real number and 0<x<1 ,lie on a plane. Draw these functions and find the area they and the line x=0.6 enclose using integration correct to 3 decimal places


Given that (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2) = 7, show that tan(x)^2 = 3/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning