Given that y = 16x + 1/x , find the two values of x for which dy/dx = 0

The first stage of this question involves differentiating the equation of y in terms of x given to us. In order to differentiate, we first need to write y in terms of base x (where all the terms are x to the power of n). 1/x will go to x-1. Now we can differentiate for each term in the equation, bringing the power for each value of x down and multiplying it by the coefficient of the term, and then reducing the power of x by 1. This gives an equation for dy/dx = 16 - 1/x2.
The second stage of the question involves solving the dy/dx equation to get values of x for which dy/dx = 0. By putting our equation for dy/dx = 0 and solving it for x, we will get two values for x, which is the answer the question requires. Hence, 0 = 16 - 1/x2 , giving values of x = + 0.25 and -0.25.

Answered by Andrew K. Maths tutor

4234 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the binomial theorem, find the coefficient of x^4*y^5 in (x-2y)^9.


Express: (x^2 + 5x - 14) / (2x^2 - 4x) as a fraction in it's simplest form.


The equation x^2+ kx + 8 = k has no real solutions for x. Show that k satisfies k^2 + 4k < 32.


Find the equation of the tangent for x = 2cos (2y +pi)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences