Given that y = 16x + 1/x , find the two values of x for which dy/dx = 0

The first stage of this question involves differentiating the equation of y in terms of x given to us. In order to differentiate, we first need to write y in terms of base x (where all the terms are x to the power of n). 1/x will go to x-1. Now we can differentiate for each term in the equation, bringing the power for each value of x down and multiplying it by the coefficient of the term, and then reducing the power of x by 1. This gives an equation for dy/dx = 16 - 1/x2.
The second stage of the question involves solving the dy/dx equation to get values of x for which dy/dx = 0. By putting our equation for dy/dx = 0 and solving it for x, we will get two values for x, which is the answer the question requires. Hence, 0 = 16 - 1/x2 , giving values of x = + 0.25 and -0.25.

Answered by Andrew K. Maths tutor

4473 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A Polynomial is defined as X^3-6X^2+11X-6. a)i Use the factor theorem to show that X-3 is a factor. ii Express as a linear and quadratic b)Find the first and second derivative c) Prove there is a maximum at y=0.385 to 3DP


[FP2] Solve: 3 cosh x - 4 sinh x = 7


differentiate y=(3x)/(x^2+6)


Given x=Sqrt(3)sin(2t) and y=4cos^2(t), where 0<t<pi. Show that dy/dx = kSqrt(3)tan(2t).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences