Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.

To prove the above statement we will be using proof by induction as this is the easiest way to prove that the statement holds for all natural numbers n>=2. Firstly, when proving by induction there are three main steps to consider: 1) Base case: Prove the statement holds for n = 2 2) Inductive step: Assume the statement is true for n = k and thus prove it is true for n = k+1 3) Concluding the proof 1) For n = 2: LHS: ∑(1/(r^2 -1)) = 1/(2^2-1) = 1/3 RHS: (3n^2-n-2)/(4n(n+1)) = (12-2-2)/(423) = 1/3 Thus true for n=2 2) Assume true for n=k. To prove true for n=k+1, substitute n=k+1 in LHS: ∑{r=2,k+1} (1/(r^2 -1)) = 1/((k + 1)^2 - 1) + ∑{r=2,k} (1/(r^2 - 1)) = 1/((k + 1)^2 - 1) + (3k^2 - k - 2)/(4k(k + 1)) as we have assumed true for n=k = (4(k + 1)+(3k^2 - k - 2)(k + 2))/(4k(k + 1)(k + 2)) by expanding and simplifying = (k(3k + 5))/(4(k + 1)(k + 2)) Now substitute n=k+1 in RHS: (3(k + 1)^2 - (k + 1) - 2)/(4(k + 1)((k + 1) + 1)) = (k(3k + 5))/(4(k + 1)(k + 2)) as required. Thus true for n=k+1 3) The concluding statement:From 1) the statement is true for n=2. Since the statement is true for n=k by 2) it is true for n=k+1, thus by the principle of mathematical induction it is true for all natural numbers n>=2.

Related Further Mathematics A Level answers

All answers ▸

The rectangular hyperbola H has parametric equations: x = 4t, y = 4/t where t is not = 0. The points P and Q on this hyperbola have parameters t = 1/4 and t = 2 respectively. The line l passes through the origin O and is perpendicular to the line PQ.


What are the conditions required for the poisson distribution?


What are the different forms of complex numbers and how do you convert between them?


How do I know which substitution to use if I am integrating by substitution?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences