If an alpha particle (Z = 2) of kinetic energy 7 MeV is incident on a gold nucleus (Z = 79), what is its closest distance of approach?

In Rutherford Scattering, an incident particle will reach the closest distance of approach when it is on a collision course head on with the target nucleus. At the closest distance of approach, the alpha particle comes to rest, hence it no longer has any kinetic energy. Because both the alpha particle and gold nucleus are positively charge, the initial kinetic energy is transformed into electric potential energy, and due to energy conservation, these must always sum to the initial kinetic energy. We can then equate the initial kinetic energy KEα to the final potential energy PEα at the instant the alpha particle is at rest with the equation PEα = KQalphaQGold/rmin = KEα where K = 1/4πε0 , Qalpha= Zalphae, QGold = ZGolde , e = 1.6x10-19C and rmin is the closest distance of approach. Substituting these and equating gives PEα = kZalphaZGolde2/rmin = KEα. To convert KEα from MeV to Joules we must divide by e and multiply by x106 hence kZalphaZGolde2/rmin = 7x10^6e  and rearranging for rmin gives rmin = kZalphaZGolde/7x10^6 = 3.25x10-14m

Answered by Robert N. Physics tutor

3607 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A Positron has the same mass, but opposite charge to an electron. A Positron and electron are orbiting around each other separated by 1μm, in a stable circular orbit about their centre of mass, as a result of electrostatic attraction. Calculate the period


Describe and explain how a constant rate of fission is maintained in a reactor by considering what events or sequence of events may happen to the released neutrons. (6 marks)


Define a "Vector Quantity" and list 2 examples.


What is a vector?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences