If an alpha particle (Z = 2) of kinetic energy 7 MeV is incident on a gold nucleus (Z = 79), what is its closest distance of approach?

In Rutherford Scattering, an incident particle will reach the closest distance of approach when it is on a collision course head on with the target nucleus. At the closest distance of approach, the alpha particle comes to rest, hence it no longer has any kinetic energy. Because both the alpha particle and gold nucleus are positively charge, the initial kinetic energy is transformed into electric potential energy, and due to energy conservation, these must always sum to the initial kinetic energy. We can then equate the initial kinetic energy KEα to the final potential energy PEα at the instant the alpha particle is at rest with the equation PEα = KQalphaQGold/rmin = KEα where K = 1/4πε0 , Qalpha= Zalphae, QGold = ZGolde , e = 1.6x10-19C and rmin is the closest distance of approach. Substituting these and equating gives PEα = kZalphaZGolde2/rmin = KEα. To convert KEα from MeV to Joules we must divide by e and multiply by x106 hence kZalphaZGolde2/rmin = 7x10^6e  and rearranging for rmin gives rmin = kZalphaZGolde/7x10^6 = 3.25x10-14m

Answered by Robert N. Physics tutor

3727 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball of mass 0.25 kg is travelling with a velocity of 1.2 m/s when it collides with an identical, stationary ball. After the collision, the two balls move together with the same velocity. How fast are they moving?


Explain the wave - particle duality


Why is the classical model of light insufficient in explaining the photoelectric effect?


Water flows through an electric shower at a rate of 6kg per minute. Assuming no heat is transferred to the surroundings, what power is required to heat the water by 20K as it flow through the shower?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences