Write √ 45 in the form a √ 5, where a is an integer.

You can separate any surd into factors of the number that is being square rooted, for example when you have a surd such as √ 12 it can be rewritten as √ 2 X √ 6 or √ 3 X √ 4. This is very useful when we work with surds that have factors that are square numbers, as they can be simplified. Using the example of √ 12 if we separate it into √ 3 X √ 4, we know that 4 is a square number so we can rewrite the √4 as 2. This means we can turn √ 12 into √ 3 X 2 = 2√ 3. When we look at the example in the question we are already given one of the factors, 5. This means if we divide 45 by 5 we will get the other factor, 9. So we have √ 9 X √ 5, we know that 9 is 3 squared so we can just write it as 3√ 5.

Answered by Aaron G. Maths tutor

19754 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel


What is 4536000 in words and what is that number to 3 significant figures?


How do you substitute a number into an algebraic expression?


Two simultaneous equations are given as 2x + y = 5 and 3x + y = 7. Find the value of x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences