It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.

z = 3i(7-i)(i+1)= 3i(7i-i+7-i2 )= 3i(6i+8)= 18i2 +24 (1 method mark)= 24i-18 (1 method mark)k=18 (1 answer mark)

DT
Answered by Daniel T. Further Mathematics tutor

2323 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I find the square root of a complex number?


Show, using de Moivre's theorem, that sin 5x = 16 sin^(5) x - 20 sin^(3) x + 5 sin x 


Expand (1+x)^3. Express (1+i)^3 in the form a+bi. Hence, or otherwise, verify that x = 1+i satisfies the equation: x^3+2*x-4i = 0.


What are imaginary numbers, and why do we bother thinking about them if they don't exist?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning