It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.

z = 3i(7-i)(i+1)= 3i(7i-i+7-i2 )= 3i(6i+8)= 18i2 +24 (1 method mark)= 24i-18 (1 method mark)k=18 (1 answer mark)

DT
Answered by Daniel T. Further Mathematics tutor

2322 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.


Prove by induction that, for all integers n >=1 , ∑(from r=1 to n) r(2r−1)(3r−1)=(n/6)(n+1)(9n^2 -n−2). Assume that 9(k+1)^2 -(k+1)-2=9k^2 +17k+6


How do I find the square root of a complex number?


Define tanh(t) in terms of exponentials


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning