It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.

z = 3i(7-i)(i+1)= 3i(7i-i+7-i2 )= 3i(6i+8)= 18i2 +24 (1 method mark)= 24i-18 (1 method mark)k=18 (1 answer mark)

Related Further Mathematics A Level answers

All answers ▸

Simplify i^{4}?


Find the general solution of the differential equation d^2y/dx^2 - 2(dy/dx) = 26sin(3x)


Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences