What path would a charge moving in the x-y plane track, in the presence of a uniform magnetic field out of the page?

The magnetic force on a moving charge is always perpendicular to the directions of both velocity and B-field vectors. This means that in the presence of a uniform magnetic field, a particle will experience a constant force that is always at right angles to its tangential velocity. This is precisely what is required for a body to undergo circular motion! If you like, you can imagine a ball attached to one end of the string, with the other end secured on a tabletop with a pin. If you give the ball an initial velocity it will start moving in a circular arc. The force the string exerts to the ball has the same characteristics as the magnetic force described in the first paragraph. The origin of the two force is of course very different and yet the motion itself is identical.[DIAGRAM]

AH
Answered by Arsenios H. Physics tutor

1997 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A 1.6m long string fixed at both ends vibrates at its fundamental frequency... (i)what is this frequency?


The Σ0 baryon, composed of the quark combination uds, is produced through the strong interaction between a π+ meson and a neutron. π+ + n →Σ0 + X What is the quark composition of X?


What does a negative velocity mean?


How would we calculate the distance covered by a train that starts at rest, then accelerates to 5km/hr in 30 mins then stays at this constant speed for 12 minutes?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning